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1 Introduction Theproblemof optimal dynamic allocation of randomly arriving live
organs (e.g., kidneys) to ‘candidates’ queueing for transplant is more severe than ever.
There is a growing gap between demand and ‘supply’ (from deceased ‘donors’). In the
USA, only a quarter of wait listed patients receive a deceased donor’s kidney transplant
within 5 years [1]. Various procedures are used, based mainly on candidates’ queueing
time seniority, when determining ‘who will get the cadaver,’ but allocation according
to the best-fit human leukocyte antigen (HLA) criterion is rarely implemented. Since a
newly arriving live organ cannot be stored, it should be assigned upon arrival to one of
thewaiting candidates, or otherwise lost. The ‘donor-priority rule’ increases the supply,
but compromises the average quality, leading to a decreased social welfare [2]. The aim
of this note is to encourage the use of amulti-objective policy, based simultaneously on
HLA best-fit considerations, and on candidates’ waiting time seniority fairness, when
determining the allocations of the stochastically arriving scarce resource, live organs.
2 Problem statement A human being possesses two series of antigens, Series-1
and Series-2, from which, upon birth, two antigens from each Series are randomly
‘selected’. Consequently, there are 5 possible levels of HLA-matching between a
randomly arriving graft and a random candidate. Let H denote the number of gene
mismatches between a live organ and a random candidate. H can assume the following
values: (i) H = 0, i.e., all 4 antigens match (A-match); (ii) H = 1, a single mismatch
(B-match); (iii) H = 2, two mismatches (C-match); (iv) H = 3, three mismatches
(D-match); and (v) H = 4, no matches at all (E-match). Let fi = P(H = i), i =
0, 1, 2, 3, 4, and let Fi = P(H ≤ i), F4 = 1. Different mismatches yield different
corresponding ‘rewards’. For example, a reward can be calculated as the probability
that the graft survives at least one year. According to a set of data on a population of
age 55-64 and its corresponding gene frequencies [3], and assuming that a recipient’s
antigens are #1 and #2 from Series-1, and #7 and #12 from Series-2, the probabilities
are f0 = 0.0094, f1 = 0.0941, f2 = 0.3134, f3 = 0.4073, and f4 = 0.1758.
The corresponding rewards are x0 = 0.70, x1 = 0.62, x2 = 0.49, x3 = 0.47, and
x4 = 0.44, where xi is the reward when H = i . It should be emphasized that any
other appropriate values can be considered.
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Let T denote a candidate’s lifetime (e.g., on dialysis). Let G(t) = P(T ≤ t) with
density g(t) and hazard function r(t) = g(t)/[1 − G(t)]. Let 0 ≤ β(t) ≤ 1 be a
continuous non-increasing discount function with β(0) = 1. Let X denote the random
‘reward’ from a randomHLA-type match, with distribution P(X ≤ x). Suppose there
is only a single candidate waiting for transplant. Then, the following holds [3]:
Theorem Let the arrival process of kidneys follow a non-homogeneous Poisson pro-
cess with rate μ(t). If G is increasing failure rate, that is, r(t) is non-decreasing, then
there exists an optimal policy characterized by a continuous non-increasing function
λ(t) on (0,∞), such that an ‘offer’ of a kidney with a reward value X = x at time t
is accepted iff β(t)x ≥ λ(t). λ(t) is the solution of the differential equation:

λ′(t) = r(t) · λ(t) − β(t) · μ(t) −
∫ ∞

λ(t)/β(t)
(1 − P(X ≤ x))dx

If r(t) is increasing andμ(t) is non-increasing, a simple upper bound on λ(t), decreas-
ing in t , is: 0 ≤ λ(t) ≤ [β(t)μ(t)/r(t)]E[X ]. T can be approximated [3] by a
Gamma distribution with density g(t) = θ2te−θ t , scale parameter θ = 0.4, and
mean E[T ] = 5. For example, given the above population’s gene frequencies and
letting β(t) = 1, the optimal policy for the single candidate is of a threshold type
as follows: from 0 to 1.83 years of ‘dialysis age’—wait for at least B-match; from
1.83 to 8.05 years—wait for at least C-match; beyond 8.05 years—wait for at least
D-match; never accept an E-match. [why? because the E-match reward, x4, is below
the asymptote of λ(t)]. Note that, in this example, a transplant is not conditioned on
receiving an A-match. Consider now the actual case when n candidates are queueing
for transplants and a random live organ arrives. This event generates a set of n differ-
ent levels of HLA compatibility, resulting in n corresponding i.i.d. random rewards
X1, X2, . . . , Xn , where X j denotes the reward of the j-th candidate in line (accord-
ing to a first come first served (FCFS) discipline). Allocating by the FCFS, the mean
attained reward is E[X ] = ∑4

0 fi xi . However, let X∗
(n) = max(X1, X2, . . . , Xn).

Then, we argue that the newly arriving kidney should be allocated according to the
HLA best-fit policy, namely assigned to the candidate having the value X∗

(n) pro-
vided that X∗

(n) ≥ λ(t) for that candidate. This policy creates a new measure of
effectiveness [4], called Expected Value of Transplantation (EVT), which takes
into account the quality of each possible transplant in terms of its corresponding
HLA quality. Thus, with F̄i = 1 − Fi , the mean value of such allocation policy
is E[X∗

(n)] = (1 − F̄n
0 )x0 + ∑4

1((1 − F̄n
i ) − (1 − F̄n

i−1))xi . For a given queue,
with an arbitrary influx process of candidates and an arbitrary inter arrival process
of live organs (‘service’ time), let L denote the number of waiting candidates. Set
Pn = P(L = n). Then, the HLA best-fit policy yields the following EVT value:
EVT = ∑∞

0 PnE[X∗
(n)], where E[X∗

0] = 0, and E[X∗
(1)] = E[X ] = ∑4

n=0 fi xi .
Clearly, EVT ≥ E[X ] [4]. Moreover, one can envision [5] future technologies by
which it will be possible to store arriving live organs (at cost) so that a double-ended
queue will form: waiting candidates on the one hand, and stored organs on the other
hand. Under the HLA best-fit matching, 3 measures of effectiveness are investigated
in [5]: (i) Expected Reward per Transplantation; (ii) Rate of Reward from Trans-
plantation; and (iii) Gained Rate of Reward per one dollar of expenditure. Numerical
examples show the advantage of the HLA best-fit allocation.
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3Discussion Thequestion now is ‘what about fairness’? Should candidates possess-
ing low-frequency antigens be discriminated when using the HLA best-fit criterion?
For the majority of people, the word ‘queue’ means a FCFS discipline. However, the
FCFS order does not necessarily imply quality efficiency (think, for example, on
Shortest Processing Time First policy, or on Processing Sharing service mechanism).
Using the HLA best-fit procedure in live organ allocation is closely related to a Ran-
dom Order of Service policy. The issue of quantifying ‘fairness in queues’ has been
investigated in the queueing literature (e.g., [6–8] and references there). In [6], the issue
of unfairness in an M/G/1 queue is discussed, while in [7, 8] a measure of fairness, or
discrimination, called Resource Allocation Queueing Fairness Measure (RAQFM) is
proposed. The RAQFM deals with both relative job seniority and relative job’s service
time, and it accounts for individual job discrimination, as well as for system unfair-
ness. Consider a single-server queue where L(t) denotes the number of customers
present in the system at time t . The fundamental principle underlying RAQFM is that
at every instant t , all customers present in the system deserve an equal share of the
server’s capacity. Suppose customer j arrives at time a j and departs at time d j while
requiring a total service time s j . The overall discrimination of this customer, Dj , is the
difference between the customer’s service requirement and the total attained service
during the customer’s sojourn time in the system: Dj = s j −

∫ d j
a j

[1/L(t)]dt , where Dj

might be positive or negative. An important property of this measure is that for a non-
idling service-conserving system, the sum of the individual discriminations equals 0
at any instant t. Various service disciplines are discussed in [8]. The subject area of
research proposed in this letter is a combined queueing-type analysis regarding the
multi-objective dichotomy of (i) quality efficiency based on HLA best-fit criterion,
and (ii) fairness associated with lengths of time candidates wait for transplant—on
the other hand.
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